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1.Introduction - Neural Network Design Challenges
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1.Introduction - Motivation

Limited understanding how to affect scaling Models by varying Depth and Width.

How to design scaling models to improve performance by varying depth and width.

Do these different model architectures learn different intermediate features (hidden layer)?
How do depth and width affect final learned representations?
How varying depth and width affects finding a redundancy?
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Decrease depth and increase width of residual

networks. Wide Residual Networks (WRNs)

Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." ICML 2019.

Zagoruyko, Sergey, and Nikos Komodakis. "Wide residual networks." BMVC 2016.



1.Introduction
We develop a method based on Centered Kernel Alignment (CKA) to efficiently measure the similarity
of the hidden representations of wide and deep neural networks.
1) Apply CKA to different network architectures to find difference between representations.

2) A block structure appears in overparameterized models.

3) Find that the block structure corresponds to hidden representations having a single principal
component that explains the majority of the variance in the representation.

4) We show that some hidden layers exhibiting the block structure can be pruned with minimal
impact on performance.

5) We find that wide and deep models make systematically different mistakes on ImageNet, even
when these networks achieve similar overall accuracy. (wide is scenes / deep is goods)



2.Preliminaries - Comparing Neural Net Representation
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2.Challenges in comparing representations
Euclidean Distance d(x, y) = A ’i(vi -z
A/ X B
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Dot Product Similarity <vec(XXT), vec(YYT)> = tr(XXTYYT) = HYTXH}?E.

Is it possible to compare neural network representations?
various representations having neurons or dimensions.
(Invariance to Invertible Linear Transformation, Orthogonal Transform, Isotropic scaling)
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2.Comparing Similarity Structures - CKA

One way to understand trained neural networks is by comparing their representations by CKA
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2.Comparing Similarity Structures - CKA

Centered Kernel Alignment (CKA) is a similarity metric designed to measure the similarity of between
representations of features in neural networks.(summarizes measurements into a single scalar)
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2.To understand trained neural networks

Architecturally identical networks A and B trained from different random initializations, a layer from

net A should be most similar to the architecturally corresponding layer in net B
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2.CKA Reveals Network Pathology

CKA between Iayers of individual networks of different depths on the CIFAR-10 test set
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3.Methods - Width and Depth

Depth  Width CIFAR-T0 Test CIFAR-100 Test
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He, Kaiming, et al. "Deep residual learning for image recognition." CVPR 2016.



3.Emergence of the block structure with increasina width or deoth.
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3.Block structure with narrower networks when trained on less data.

All Training Data
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3.Block structure without residual connections & Random initializations
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3.The First Principal Component

For centered matrices of activations X € R"*P1| Y € R"*P2 linear CKA may be written as:
p p2 t AT Judd | \2

CKA(XXT YYT) = iél =1 f\'/\J,<uf¥,ll'§,)

VL Ry o )

where u’y € R™ and u}, € R" are the i normalized principal components of X and Y

Let the i eigenvalue of X X7 (squared singular value of X) be indexed as \%-.
g q g X
Examples Colored By Net A Principal Components

Net APC1
NetB PC 1

Net APC 2 Net B PC 2
CIFAR-10 Test (first two PCA in intermediate layer

Kornblith, Simon, et al. "Similarity of neural network representations revisited." ICML 2019.



3.Block structure & Principal component

ResNet-110 (1x) ResNet-38 (10x) ResNet-44 (1x)
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This principal component is also preserved throughout the block structure,
Variance measure is significantly higher where the block structure is present.



3.Accuracy related with linear probe & block structure

ResNet-26 (2X%)
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Without the block structure monotonic increase
in accuracy throughout the network, with the
block structure linear probe accuracy shows
little improvement inside the block structure.
Comparing the accuracies of probes for layers
pre- and post-residual connections play an

important role in preserving representations in
the block structure.

Proceed to pruning blocks one-by-one from
the end of each residual stage,

This result suggests that block structure could
be an indication of redundant modules in
model design, and that the similarity of its
constituent layer representations could be
leveraged for model compression.



3. Different initializations & model capacity
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3.Depth and Width affects on Model prediction

CIFAR-10 ImageNet
a 100} C 6l honeycomb
XS 75l 0% On ImageNet there are statistically
o 1 , . : )
T8 sl ar eere I wop Fanan e differences in class-level error rates
23 & between wide and deep models.
g< g 2f d:e?
o e M % Y :
[} v %% : >
£ ol . B Ll Width -> Scene
b > - 0‘:"0
Xe g gy s
LAt 3 § -2t
A > A T
28 50 i A
% é 25l ‘,\,}s 4+ mud turtle Lagge]x(dg; éetgele&/er
& < 3 .Q ResNet-83 - ResNet-83 (Control) Friish & Grcler spi%er
A ResNet-50 (2.8x) - ResNet-83 ram
0'# I I -6t 1 | L L L
0 50 100 20 40 60 80 100
ResNet-62 (1X) Accuracy (%) ResNet-83 Accuracy (%)
b ResNet-62 (1Xx): 87% 74% 64% 97% 98% 96% 86% 1% 60%
ResNet-14 (2X): 22% 6% 8% 44% 44% _ 36% 43% 20% 16% ) )
Easiarior Cifar-10 : highest
ResNet-62 (1x) 2% accuracy differences
between the two types of
ResNet-62 (1X): 20% 26% 28% 22% 23% 11%
ResNet-14 2X): 90% 92% 79% 7% 96% - 50% models

rmm=== - 3
1 Easier for f

| ResNet-14 (2x)

\ ' L



3.Comparison of accuracy of wide and deep

Class # Classes Wide Acc. Deep Acc. Diff. p-value
entity 1000 78.0£0.01 78.0+£0.01 —0.03 0.89 P-values are computed
physical entity 997 78.0+0.01 78.0£0.01 —0.03 0.89 using a t-test with multiple
object 058 78.1+£0.01 78.14£0.01 -0.04 0.76 testing (Ho|m_S|dak)
whole 949 78.240.02 78.2+0.01 —0.05 0.48 correction.

Latifact 522 73.8+£002 7384002 -001 -

i living thing 410 83.5+£0.02 83.64+0.02 —-0.10 0.023

i organism 410 83.54+0.02 83.64+0.02 -—-0.10 0.023 i

' animal 308 83.34+£0.02 83.4+0.02 —-0.09 0.032 |

“container 100 727 E£0.05 727004000 T
covering 90 72.04+0.05 72.2+£0.05 -0.19 0.13
conveyance 72 83.54+0.04 83.4+0.05 0:13 0.65
vehicle 67 83.2+004 83.1+0.05 0.11 0.76

_huntingdog ______________ 63 __81.2 2006 _812+0056 ___ 0.01.__ i i

| commodity 63 72.2+0.06 72.6+0.07 —-042 5.1x107°:

| consumer goods 62 7234006 72.7+0.07 —0.41 6.7x107°:

| invertebrate 61 83.6£0.05 83.8+0.04 —0.16 0.37 .

' bird 59 9254+£004 92.7+0.05 -—-0.21 0.0018 .

structure 58 75.94+0.06 75.5+0.07 042 B5.7x107°
matter T T 507" 7Tr 6005 7T AEX005 {18 S 0.74"



4.Conclusion

[Contribution]

Guiding researchers to design networks.(design wide and depth network for performance)
Similarity of constituent layer representations could be leveraged for model compression.
(Block Structure)

Statistically significant differences in class-level error rates between wide and deep models.

[Limitation]
Small dataset.(Cifar10 or Cifar100) more explore on Imagenet 1K.
Other Architecture (CNN, GAN and Transformer...)

[Future Work]

How to design block transformer per stage. (ViT)

How does it related with Param and FLOPS.

Suppress block structure on training time.

Generalize to other Domain and Vision tasks(NLP, Detection).
Contrastive learning for feature similarity? (CKA).



Do Vision Transformers See Like Convolutional Neural Networks?

Analyzing the internal representation of ViTs and CNNs on image classification, we find differences
between the two architectures, such as ViT having more uniform representations across all layers
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A good paper on a timely
topic. All reviewers
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Could be a spotlight
presentation.
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Raghu, Maithra, et al. "Do vision transformers see like convolutional neural networks?." NeurlPS 2021



Analyzing Individual Neurons in Pre-trained Language Models

General Redundancy and Task-specific Redundancy. We dissect two popular pretrained models,
BERT and XLNet, studying how much redundancy they exhibit at a representation-level and at a
more fine-grained neuron-level
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Figure 1:

Embedding
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9

Layer 10
Layer 11
Layer 12

Pairwise Similarity between the layers.

Brighter colors indicate higher similarity.
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General neuron-level redundancy in BERT and XLNet; comparing
the average reduction of neurons for different number of features

Adjacent layers are most redundant in the network, with lower layers having greater redundancy with
adjacent layers. Comparing models, XLNet is more redundant than BERT.

Durrani, Nadir, et al. "Analyzing individual neurons in pre-trained language models." EMNLP 2020.



Openreview (ICLR 2021)

Neural networks with different architectures (width and depth learn similar representations). All reviewers agree that the
investigations are thorough and the experimental discoveries are convincing and well explained.

Official Blind Review #1 (Rating 6: Marginally above acceptance threshold)

- | wonder if the block structure arises dependent to the residual blocks. | want to see more experiments with other
network architectures. | expect to see an modified network architecture or a method to balance the network size and
accuracy . However, just about theoretical analysis based on experiment phenomenon.

Official Blind Review #2 (Rating 8: Top 50% of accepted papers, clear accept)

- The most interesting and somewhat surprising finding is that even though two networks with different number of
parameters and layers but with the same accuracy make very different mistakes, and there is a pattern to it. The weakest
part is the similarity analysis, which does not seem to reveal much new. | propose lower score only due to the unclear
choice of similarity function, as described above.

Official Blind Review #3 (Rating 6: Marginally above acceptance threshold)

- This is an interesting method and characterization of resnet behavior, with thorough experiments that tie together different
aspects of the approach. CKA is used to show a type of blockwise similarity, much of which is subsequently explained,
and related experimentally to classification performance using linear probes through the layers.

Official Blind Review #4 (Rating 7: Good paper, accept)

- In my humble opinion, the paper is very clearly written, presenting at the beginning of each section the scientific question
they try to answer. Do the authors have solid reasons to believe that their findings generalize to other neural models
(other ConvNets, recurrent, generative,...) and problems (regression, dense prediction,...?

https://openreview.net/forum?id=KJNcAkY8tY4



https://openreview.net/forum?id=KJNcAkY8tY4

Thanks

Any Questions?

You can send mail to
Susang Kim(healess1@amail.com)
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